경제, 금융, 공학

동두천양주교육지원청 영재교육원 최우수 수료, 한국디지털미디어고등학교 해킹방어과 졸업, 연세대학교 공과대학 재학중, 2022 교육부 장학생.

Study Steady

Yonsei Univ/Matlab

Matlab - Study 2 (다항식 연산,행렬 연산,함수 그리기)

uniblack 2022. 12. 28. 01:09

a = [6 -2;10 3]

b = [9 8;-12 14]

a+b %행렬 덧셈

3*b %행렬 곱셈

%각각의 요소에 곱해주려면 .을 꼭 붙여야 한다)

a .* b %행렬원소 끼리의 곱셈

a.^2

%행렬곱

a*b

% a 행렬의 행과 b행렬의 열을 각각 곱해서 더해줌.

% [1 2] [5 6]

% [3 4] [7 8] 곱하면 , 1*5 +2*7 , 1*6 + 2*8 이런식으로 된다.

% 교환법칙이 성립하지 않는다, 다른 값이 나와버림

A = [6 12 4;7 -2 3;2 8 -9]

B = [70;5;64]

Solution = inv(A)*B

c = poly([-2,-5]) % 근이 -2와 -5인 다항식을 만들어라

%근을 구할때는 roots 함수 이용

%다항식 곱셈 및 나누기

d = [9 -5 3 7]

e = [6 -1 2]

product = conv(d,e) % conv 다항식 곱셈

[q,r] = deconv(d,e) % q에는 몫 , r에는 나머지 저장

% x범위를 설정해서 다항함수를 그려보자!

% f(x) = 9x^3 - 5x^2 + 3x + 7 , -2<=x<=5

g = [9 -5 3 7]

x = -2:0.01:5

f = polyval(g,x)

plot(x,f),xlabel('x'),ylabel('f(x)')